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Abstract. A continuum theory is proposed to study the influence of distributed windows on the compression
wave generated by a train entering a tunnel-entrance hood at high Mach numbers. Longer, acoustically noncompact
hoods must be used to control the wave-front characteristics at train Mach numbers M between about 0·25 and 0·4.
A train entering a fully optimized hood of length �h produces a compression wave wherein the pressure increases
linearly over a wave front of thickness ∼ �h/M . When M exceeds about 0·2, the interactions of the train nose
with windows at opposite ends of the hood become progressively more independent. For a hood whose windows
are optimized for low Mach numbers, we show that high-Mach-number operation produces a rapid increase in
pressure at the head of the compression-wave front, generated just as the nose enters the hood portal. The pressure
rise becomes substantially smoother and close to linear when the nose is within the body of the hood, within the
relatively homogeneous environment provided by the distributed windows.

The theory can be extended to permit hood optimization at the high Mach numbers appropriate for magneti-
cally levitated (‘Maglev’) trains, and to permit the design of ‘smart’ hoods whose window sizes and distribution
can be automatically optimized to suit the speed of an entering train.
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1. Introduction

The pressure rise �p across the front of the compression wave generated in a tunnel of cross-
sectional area A ahead of an entering train of cross-section Ao is given approximately by

�p ∼ ρoU
2

(1 − M2)

Ao

A

(
1 + Ao

A

)
(1.1)

provided the ‘blockage’ Ao/A is less than about 0·25, where ρo is the mean air density, U the
train speed, and M = U/co is the train Mach number (co = speed of sound in air) [1–7]; �p

can exceed 2 or 3% of the atmospheric pressure at speeds U of 250 kph (150 mph) or more.
The wave front thickness ∼ R/M, where R is the radius of the equivalent semi-circular

tunnel of the same cross-sectional area, and the front advances into the tunnel at the speed of
sound. However, acoustic nonlinearity (producing wave front steepening) can result in a sig-
nificant reduction in wave thickness in a long tunnel fitted with ‘acoustically smooth’ concrete
slab tracks . This can greatly increase the strength of the acoustic pulse – the micro-pressure
wave – radiated from the far end of the tunnel when the compression wave arrives, because
the amplitude of the pulse is proportional to the steepness of the incident compression wave.
The micro-pressure wave can excite annoying structural ‘rattles’ and vibrations in buildings
near the tunnel exit – it is one of the most important impediments to further increases in train
speed.
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Figure 1. (a) Schematic of the circular cylindrical tunnel of radius R fitted with a hood of length �h when there
are N = 4 rectangular windows. The geometric centre of the nth window is at x = xn, y = 0, z = R.
(b) Characteristic dimensions of an axisymmetric train entering the hood at speed U along the centreline of the
tunnel.

Nonlinear steepening tends to be inhibited if the initial wave thickness is sufficiently large,
and effective suppression of the micro-pressure wave can often be achieved by installing a
‘hood’ ahead of the tunnel entrance. They have been used in Japan since 1977. The hood
consists of a thin-walled tunnel extension that increases the initial compression wave thickness
by permitting the release of high-pressure air in front of an entering train through ‘windows’
strategically placed along the hood walls [6, 8, 9] (Figure 1 shows schematically a hood
attached to the entrance of a circular cylindrical tunnel frequently used in model scale exper-
iments). In an optimally designed hood of length �h, the train produces a compression-wave
front initially of thickness ∼ �h/M across which the pressure rises linearly. In practice the
hood length �h depends on tunnel length and the maximum expected train speed, and may be
assumed to be prescribed for the purpose of optimizing hood design. It is feasible to use model
scale tests to determine the appropriate window size and spacing for the relatively short hoods
(�h ∼ 3R) required for conventional high-speed operations (M ≤ 0·2). But much longer
hoods (say �h ≈ 10R, [10]) will be necessary at the projected higher speeds of newer trains,
involving M as large as 0·4 for ‘Maglev’ types (when (1.1) implies that �p ∼ 6% atmospheric
pressure).
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It then becomes impracticable to base hood design entirely on ad hoc experimentation. The
author [11] has developed an approximate analytical scheme for determining the optimal spac-
ing and sizing of windows in a long hood that is strictly applicable when the wave thickness
∼ �h/M can be regarded as very much larger than the hood length �h, that is, when the hood
length �h is ‘compact’ – short compared to the wavelengths of the principal acoustic pressure
transients generated by the train. This approximation is valid at the lower Mach numbers of
conventional trains (M < 0·2), but the increased importance of compressible flow effects
within the hood at higher values of M can be expected to produce significant departures of the
initial compression-wave profile from the optimal linear form.

In this paper the earlier theory [11] for the design of an optimal compact hood is developed
further to examine high-Mach-number effects. The compact design is expected to be adequate
for Mach numbers at least as large as M = 0·2. The objective here is to take such an optimally
designed compact hood, with window spacing and sizing prescribed for optimum operation at
low Mach number, and examine how the compression-wave front varies from the ideal linear
profile as the Mach number is increased. Model scale experiments [12] suggest that the theory
is applicable when the blockage Ao/A ≤ 0·2; this condition is satisfied in all anticipated
applications at full scale.

The analytical theory of compression-wave formation is reviewed in Section 2; the formal
analytical representation of the wave in terms of a Green’s function is discussed in Section 3
for a circular cylindrical hood with an arbitrary prescribed distribution of windows. The com-
pact approximation is derived in Section 4, and extended in Section 5 to include compressible
effects within the hood. Numerical results are presented that illustrate the progressive degrada-
tion of the compression wave front profile from its optimal linear form with increasing values
of the train Mach number. Explicit results are discussed only for a tunnel and hood of the
same circular cylindrical cross-section, of the type used in model scale experimental studies
[3, 5–8, 11], although the method is easily modified to deal with more general geometries.

2. Representation of the compression wave

Consider a circular cylindrical tunnel of radius R and cross-sectional area A = πR2 fitted
with a cylindrical hood of the same cross-section having N windows distributed along the
hood parallel to the tunnel axis (Figure 1). Take coordinate axes x = (x, y, z) with the origin
O on the cylinder axis in the entrance plane of the hood, with the x-axis coaxial with the
cylinder and directed out of the tunnel. To fix ideas let the centroid of the nth window be at
x = xn, y = 0, z = R (1 ≤ n ≤ N), −�h = xN < xN−1 < · · · < x1 < 0, where �h is
the hood length. The window at xn may be regarded as curvilinear rectangular with length �x

parallel to the cylinder axis and azimuthal length �θ .
In a typical experiment an axisymmetric ‘train’ of maximum radius h is projected at high

speed into the tunnel from x > 0, guided by a steel wire tightly stretched along the tunnel axis
and threaded through a smooth cylindrical bore hole along the train axis. We shall present
numerical results for this case, but our formulae will also apply to situations where the ‘track’
does not coincide with the tunnel axis. The compression wave is generated as the front of the
train passes through the hood. To calculate the initial wave front profile the tunnel may be
assumed to extend to x = −∞, and the train regarded as semi-infinite, with uniform circular
cross-sectional area Ao = πh2 to the rear of the ‘nose’ of length L shown in the figure.
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The initial pressure rise across the compression wave front depends on train Mach number
M and on the blockage Ao/A. The train can be represented by a set of monopole and dipole
sources translating with the train that account for the displacement of air by the train and
the pressure drag over the nose. The characteristics of the compression wave front profile are
governed by the interaction of these sources with the hood portal and windows [5, 6, 8, 9,
12–14]. The pressure continues to rise slowly behind the wave front because of the action of
additional ‘vortex sources’ in the boundary layers on the train and tunnel walls and in the exit
flows from the portal and windows [15]. The contributions of these sources to the formation
of the compression wave is of secondary importance, and they are ignored in the present
discussion.

When the train enters the tunnel from x > 0 along the tunnel-axis at constant speed U , and
the blockage Ao/A ≤ 0·2, it is found to a good approximation that the monopole and dipole
sources may be taken to lie along the axis of the train (a ‘slender body approximation’) [13].
The compression wave is then determined by the solution of(

1

c2
o

∂2

∂t2
− ∇2

)
B = U

(
1 + Ao

A

)
∂

∂t

(
∂AT

∂x
(x + Ut)δ(y)δ(z)

)
, (2.1)

where

B = p

ρo

+ 1

2
v2 (2.2)

is the total enthalpy, and p and v are, respectively, the perturbation air pressure and the flow
velocity. The front of the train is assumed to cross the entrance plane of the hood (x = 0)
at time t = 0, and AT(s) is the cross-sectional area of the train at distance s from the tip
of the nose. The source term evidently vanishes except in the nose region, where the train
cross-section is changing.

In the tunnel far ahead of the train the compression wave produces a small amplitude
disturbance, and the pressure rise can be determined from the solution of (2.1) by means of
the linearized approximation

p ≈ ρoB, x → −∞. (2.3)

This is strictly valid only in the initial stages of the formation of the wave front, prior to
any nonlinear steepening. A knowledge of this solution, however, is sufficient for studies of
optimal hood design.

Equation (2.1) can be solved in terms of a Green’s function G(x, x′, t − τ), determined by
the solution of(

1

c2
o

∂2

∂t2
− ∇2

)
G = δ(x − x′)δ(t − τ), G = 0 for t < τ, (2.4)

where

∂G

∂xn

= 0 on the interior and exterior walls of the tunnel and hood, (2.5)

and where xn is a local coordinate in the normal direction from the wall. When the vorticity
ω = 0, the air velocity v = ∇φ where φ and the total enthalpy B satisfy B = −∂φ/∂t , [13],
so that (2.5) corresponds to the usual rigid wall boundary condition of potential theory.
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Approximate functional forms of G are discussed later in this paper. However, in all
cases our approximations will involve the assumption that the tunnel diameter and window
dimensions are small compared to the characteristic compression wave thickness. This turns
out to be equivalent to expanding the solution to first order in the Mach number M; to this
order the solution includes a correct representation of phase differences between interactions
of different windows with the train nose, but the predicted overall wave amplitude is too small
by a factor 1/(1 − M2), [12, 14]. We shall compensate for this at the outset by replacing the
source term in (2.1) by

U

(1 − M2)

(
1 + Ao

A

)
∂

∂t

(
∂AT

∂x
(x + Ut)δ(y)δ(z)

)
. (2.6)

This correction represents a mean (as opposed to transient) effect of compressibility. It has
been validated in [12] by comparison of predictions for flanged and flared tunnel portals
with experiment, and in [14] by consideration of the exact analytical solution for a circular
cylindrical tunnel with no windows.

Then, Green’s function and Equations (2.1), (2.3), with the modification (2.6), yield

p ≈ ρoU

(1 − M2)

(
1 + Ao

A

)
∂

∂t

∫ ∞

−∞
∂AT

∂x′ (x′ + Uτ)G(x, x′, 0, 0, t − τ)dx′dτ

= −ρoU
2

(1 − M2)

(
1 + Ao

A

)∫ ∞

−∞
∂AT

∂x′ (x′ + Uτ)
∂G

∂x′ (x, x′, 0, 0, t − τ)dx′dτ, x → −∞,

(2.7)

where the second line is obtained by differentiating with respect to time under the integral
sign and integrating by parts first with respect to τ and then x′ (noting that ∂AT/∂x′ vanishes
at x′ = ±∞).

But the compression wave is formed progressively as the train nose interacts first with the
hood portal and then with the windows, and in numerical work it is usually convenient to
isolate these interactions by using (2.7) to calculate the pressure gradient ∂p/∂t (instead of
p), because this vanishes except in the vicinity of the compression wave front. In this case we
have (after integration by parts, as above)

∂p

∂t
≈ ρoU

3

(1 − M2)

(
1 + Ao

A

)∫ ∞

−∞
∂AT

∂x′ (x′ + Uτ)
∂2G

∂x′2 (x, x′, 0, 0, t − τ)dx′dτ, x → −∞.

(2.8)

When this has been evaluated the pressure p is computed from

p =
∫ t

−∞
∂p

∂t ′
dt ′. (2.9)

3. Green’s function

3.1. THE DIFFRACTION PROBLEM

The solution (2.8) for the compression wave pressure gradient is strictly applicable in the
tunnel at large distances from the hood. The integrand is significantly different from zero only
during the interval in which the train nose crosses the hood, so that the source point x′ of
Green’s function G(x, x′, t − τ) may be regarded as confined to the vicinity of the hood. To
determine G we set
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G(x, x′, t − τ) = − 1

2π

∫ ∞

−∞
Ḡ(x, x′, ω)e−iω(t−τ ) dω. (3.1)

Then Ḡ satisfies

(∇2 + κ2
o )Ḡ = δ(x − x′), where κo = ω

co

. (3.2)

We shall solve this in the usual way by application of the reciprocal theorem [19, p. 145]
that Ḡ(x, x′, ω) ≡ Ḡ(x′, x, ω). The point source in (3.2) is regarded as placed at x within
the tunnel (where x → −∞) and the solution is sought as a function of x′ within and near
the hood. This greatly simplifies the calculations because the characteristic wavelength of the
compression wave front is much larger than the tunnel radius R, so that its principal Fourier
components in (3.1) are plane waves propagating parallel to the tunnel axis. The solution of
(3.2) must therefore be found only for values of κoR smaller than about 3·82 in magnitude
[16, p. 111], corresponding to the axially propagating components of the compression wave.

When this condition is satisfied the reciprocal point source at x (x → −∞) generates a
disturbance that propagates towards the hood (as a function of x′) in the form of the plane
wave

ḠI = eiκo(x
′−x)

2iκoA
. (3.3)

The functional form of Ḡ(x′, x, ω) is now determined by considering the ‘diffraction’ of ḠI

by the hood windows and portal.
To do this we write, for all points in the hood and in the tunnel close to the hood,

Ḡ = e−iκox

A
ϕ(x′, κo), x′ < 0, (3.4)

where within the tunnel

ϕ = 1

2iκo

{
eiκox

′ + Re−iκox
′}

. (3.5)

The second formula is applicable when x′ is to the ‘left’ of the innermost hood window in
Figure 1, say for x′ < −�h − 2R: the first term in the brace brackets corresponds to the
incident plane wave (3.3); R is a reflection coefficient that accounts for the interaction of the
incident wave with the hood and portal.

When ϕ(x′, κo) has been determined (3.1) supplies

G(x, x′, t − τ) = − 1

2πA

∫ ∞

−∞
ϕ(x′, κo)e

−iω(t−τ+x/co) dω, x → −∞, (3.6)

and the formulae (2.7) and (2.8) for the compression wave pressure and pressure gradient
assume the forms

p ≈ ρoU
2

2π(1 − M2)A

(
1 + Ao

A

) ∫ ∞

−∞
∂AT

∂x′ (x′ + Uτ)
∂ϕ

∂x′ (x
′, 0, 0, κo)e

−iω(t−τ+x/co)dx′dτdω,

(3.7)

∂p

∂t
≈ −ρoU

3

2π(1 − M2)A

(
1 + Ao

A

)∫ ∞

−∞
∂AT

∂x′ (x′ + Uτ)
∂2ϕ

∂x′2 (x′, 0, 0, κo)e
−iω(t−τ+x/co)dx′dτdω,

(3.8)
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as x → −∞.

In an optimally designed hood the function ϕ must be chosen to make the pressure in-
crease smoothly and ‘linearly’ across a compression wave front of thickness ∼ �h/M. But the
functional form of ϕ depends on the distribution of the windows, and cannot yield a perfectly
linear wave profile when the windows are distributed discretely (as opposed to continuously)
along the hood. Similarly, details of the compression-wave front also depend on the shape
of the train nose, determined by AT(x); this dependence will be weak, however, if Ao/A is
small, when in a first approximation the distributed source over the nose region of the train
may be regarded as equivalent to a source concentrated on the train axis at the centroid of the
nose.

For these reasons it is sufficient to formulate the hood design problem in terms of the
simplified forms assumed by equations (3.7), (3.8) for a ‘snub nosed’ train, whose nose length
L → 0, and for which

∂AT

∂x′ (x′ + Ut) → Aoδ(x
′ + Ut). (3.9)

We note here for future reference the particular reduced forms of (3.7) and (3.8) in this case:

p ≈ ρoU
2

2π(1 − M2)

Ao

A

(
1 + Ao

A

)∫ ∞

−∞
∂ϕ

∂x′ (−Uτ, 0, 0, κo)e
−iω(t−τ+x/co)dτdω, x → −∞,

(3.10)

and

∂p

∂t
≈ −ρoU

3

2π(1 − M2)

Ao

A

(
1 + Ao

A

) ∫ ∞

−∞
∂2ϕ

∂x′2 (−Uτ, 0, 0, κo)e
−iω(t−τ+x/co)dτdω, x → −∞.

(3.11)

3.2. DETERMINATION OF ϕ

The functional form of ϕ within the hood is governed by the Helmholtz equation

(∇′2 + κ2
o )ϕ = 0, (3.12)

where the Laplacian ∇′2 is with respect to the dependence of ϕ on x′. The solution must
satisfy appropriate boundary conditions at the windows and at the hood portal, and cannot
normally be obtained in analytic form. Analytical approximations for special cases in which
the windows are replaced by a continuous distribution of small perforations, or when there is
only one window, have been investigated in [15, 17, 18]. The procedure we shall adopt here,
however, is a development of the approximation proposed in [11] for a compact hood, where
the variation of ϕ along the track of the train is determined in two stages I and II. In the first
stage the individual windows are ignored, and ϕ = ϕI is calculated by taking account merely of
their collective, spatially averaged contribution to the solution; this averaged solution depends
only on axial location within the hood, ϕI = ϕI(x

′, κo), and is used to determine the effective
‘source strength’ of each window. When the size and shape of the nth window are known the
volume flux qn(κo) through the window directed out of the hood can be found from Rayleigh’s
formula [19, pp. 172–180]

qn(κ0) = −KnϕI(xn, κo) (3.13)
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where Kn is the conductivity of the window. In writing down this formula it is assumed that the
magnitude of the analytic continuation of ϕI(x

′, κo) to the free space region outside the hood
is negligibly small, so that the mean potential rise along a curve passing from xn on the tunnel
axis out through the window is just equal to −ϕI(xn, κo). Similarly, it is usually permissible to
assume that, even when the hood as a whole ceases to be compact, each window (of dimen-
sions �x × �θ ) remains compact, in which case the conductivity Kn will be independent of κo.
When qn(κ0) is known for each window a second approximation for ϕ can then be derived (in
the manner to be described below) by introducing the exact representations in the tunnel and
hood of the potential fields of the window sources.

The method used in [11] for stage I of the calculation was based on a one-dimensional,
step function approximation to the variation of ∂ϕI/∂x′ within the hood, the step changes
occurring across the points x′ = xn marking the centroids of successive windows. In order
to extend this procedure to include the influence of compressibility, however, it is more con-
venient to use a continuum theory, by introducing on the right of Equation (3.12) a ‘smeared
out’ representation of the influence of the windows. As viewed from the tunnel axis, each
window behaves as a sink (a source of strength −qn(κ0)) of air perturbed by the incident wave
(3.3). These are approximated in the first stage of the calculation by replacing the discrete
distribution of sinks by a continuous line sink of variable strength Q(x′, κo) extending over
the length −�h < x′ < 0 of the hood. Thus, the one dimensional equation satisfied by ϕI in
the hood is

∂2ϕI

∂x′2 + κ2
oϕI = −Q(x′, κo), −�h < x′ < 0, (3.14)

where Q(x′, κo) remains to be determined.
When Q(x′, κo) is known, Equation (3.14) is to be solved subject to conditions to be

imposed at the ends of the hood. At the inner end (x′ = −�h) we require that the values of ϕI

and ∂ϕI/∂x′ should equal those determined by the one-dimensional plane waves of (3.5), so
that

ϕI = 1

2iκo

{
e−iκo�h + Reiκo�h

}
∂ϕI

∂x′ = 1

2

{
e−iκo�h − Reiκo�h

}

 at x′ = −�h. (3.15)

In other words, ϕI must satisfy

∂ϕI

∂x′ + iκoϕI = e−iκo�h at x′ = −�h. (3.16)

At the hood portal (x′ = 0) we require ϕI to behave in the same way as the potential
of uniform flow from a circular cylindrical duct. This should be an adequate approximation
in practice provided that the centroid of the first window (at x′ = x1) is at least about one
tunnel diameter from the entrance plane of the hood. Because the motion in the portal differs
negligibly from that of an incompressible fluid, this means that [11, 13]

ϕI = −V �′,
∂ϕI

∂x′ = V, as x′ → −0, (3.17)

where �′ ≈ 0·61R is the ‘end correction’ of an unflanged duct of radius R [16, pp. 114–115,
19, pp. 487–491], and V = V (κo) is the mean flow speed ∂ϕI/∂x′ at the portal, whose value is
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initially unknown. When ϕI has been determined within the hood to satisfy these conditions,
its definition may be extended to the x-axis outside the hood portal, where it may be regarded
as matched on to the velocity potential describing flow from a circular cylindrical duct. In this
exterior domain ϕI will decrease rapidly with distance from the portal, and may to a sufficient
approximation be represented by the potential for incompressible flow.

4. The compact hood

4.1. STAGE I APPROXIMATION

Consider first the hood characteristics at sufficiently small train Mach number M that the
hood length �h is compact. We shall suppose the hood is optimized for such operations, and
determine subsequently the influence of finite Mach number on this optimal behaviour. The
neglect of compressible effects within the hood implies that ϕI ≡ ϕI(x

′, 0) does not depend
on the acoustic wavenumber κo. Then Equation (3.14) becomes

∂2ϕI

∂x′2 (x′, 0) = −Q(x′, 0), −�h < x′ < 0, (4.1)

and conditions (3.16), (3.17) reduce to

∂ϕI

∂x′ (x
′, 0) = 1 at x′ = −�h;

ϕI(x
′, 0) = −V0�

′,
∂ϕI

∂x′ (x
′, 0) = V0 as x′ → −0.

(4.2)

In these conditions V0 is a positive constant that determines the volume flux from the portal at
mean velocity ∂ϕI/∂x′ = V0; it lies in the range 0 < V0 < 1, because the outflow into the sink
(through the ‘windows’) implies that the flux from the portal cannot exceed that in the tunnel.

For an optimally designed hood the pressure increases linearly across a compression wave
front of thickness ∼ �h/M. This condition is used to determine the sink distribution function
Q(x′, 0) by consideration of the snub nosed train (3.9). When ϕ is replaced by ϕI(x

′, 0) in
formula (3.10) defining the compression wave pressure in this case, the frequency ω occurs
only in the exponential factor, whose infinite integral with respect to ω is equal to

2πδ

(
t − τ + x

co

)

Hence, for the snub-nosed train

p ≈ ρoU
2

(1 − M2)

Ao

A

(
1 + Ao

A

)
∂ϕI

∂x′ (−U [t], 0) , x → −∞, where [t] = t + x

co

. (4.3)

Conditions (4.2) imply that ∂ϕI/∂x′ in this formula increases from 0 to 1 as the retarded
time [t] increases from a value marginally less than zero to U [t] > �h. The hood will therefore
behave optimally provided

∂ϕI

∂x′ (x
′, 0) decreases linearly as x′ increases over − �h < x′ < 0.

For this to be possible the sink strength Q in (4.1) must be constant. Then
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ϕI(x
′, 0) = V0(x

′ − �′) − (1 − V0)x
′2

2�h

, −�h < x′ < 0, and Q(x′, 0) = 1 − V0

�h

. (4.4)

4.2. STAGE II APPROXIMATION

In stage II of the calculation ϕI(x
′, 0) is used to determine the window dimensions and the

contribution of each window to the compression wave profile.
The volume flux from the nth window (whose centroid is at x′ = xn) when κo = 0

is qn(0) (1 ≤ n ≤ N). This will be set to equal the net change in the axial volume flux
determined by ϕI(x

′, 0) within the hood between x′ = xn and x′ = xn−1. Then

qn(0) = A

{
∂ϕI

∂x′ (xn, 0) − ∂ϕI

∂x′ (xn−1, 0)

}
= A(1 − V0)

�h

(xn−1 − xn), n = 1, 2, . . . , N, (4.5)

where x0 = 0 (as in Figure 1).
Consider next the use of these results to calculate the pressure gradient ∂p/∂t from (3.8),

or for the snub-nosed train using (3.11) for a compact hood with a discrete distribution of
N windows. In our continuum model ∂2ϕI/∂x′2 is constant within the hood, but the true
second derivative ∂2ϕ/∂x′2 is actually significantly different from zero only in the immediate
vicinity of a window and at the hood portal. We shall therefore assume that in the case of a
distribution of discrete windows, the contribution to ϕ(x, 0) of the potential flux qn(0) from
the nth window can be approximated by the incompressible velocity potential

qn(0)

A
ϕn(x),

say, produced by a point sink of strength qn(0) at the centroid (xn, 0, R) of the window. The
justification of this hypothesis rests entirely on the resulting predictions of the compression
wave profile, to be discussed below.

Introduce cylindrical polar coordinates (r, θ, x) defined such that (z, y) = r(cos θ, sin θ).
Then routine calculation yields the formula

R
∂2ϕn

∂x2
(r, θ, x) = −1

π

∞∑
m=0

∫ ∞

0

σm cos(mθ)λ

Im+1(λ) + Im−1(λ)
Im

(
λr

R

)
cos

(
λ(x − xn)

R

)
dλ, r < R,

(4.6)

where Iν is a modified Bessel function [20, Section 9.6], and σ0 = 1, σm = 2 (m ≥ 1).
A similar integral expression can be derived [13] for the velocity potential V0ϕ0(x), say,

representing potential flow from the the hood portal, namely

R
∂2ϕ0

∂x2
(r, θ, x) = − 1

2π

∫ ∞

0
λI0

(
λr

R

)(
2K1(λ)

I1(λ)

) 1
2

cos
{
λ

( x

R
+ Z(λ)

)}
dλ, r < R,

Z(λ) = 1

π

∫ ∞

0
log

(
K1(µ)I1(µ)

K1(λ)I1(λ)

)
dµ

µ2 − λ2
.

(4.7)

where K1 is a modified Bessel function [20, Section 9.6].
Hence, our corrected estimate of ∂2ϕ/∂x2 for use in (3.8) and (3.11) is

∂2ϕ

∂x2
(x, 0) =

N∑
n=1

qn(0)

A

∂2ϕn

∂x2
(r, θ, x) + V0

∂2ϕ0

∂x2
(r, θ, x), r < R. (4.8)
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This is non-zero only within the hood in the vicinities of the windows, and at the hood portal.
The monopole strengths qn are given in terms of V0 and the window coordinates by (4.5); the
coefficient V0 remains to be specified.

4.3. WINDOW DIMENSIONS

The size of the nth window is estimated from the formula

Kn = −qn(0)

ϕI(xn, 0)
, (4.9)

where Kn is the conductivity of the window introduced above in (3.13). According to Rayleigh
[19, pp. 180–182], when the area An of the nth window is much smaller than the cross-section
A of the hood and the hood wall has thickness �w

1

Kn

≈
√

π

4An

+ �w

An

. (4.10)

Therefore, using the formulae (4.4) and (4.5), we find

An ≈ πK2
n

16

(
1 +

√
1 + 16�w

πKn

)2

,

where

Kn = A(xn−1 − xn)

x2
n/2 − V0�h(xn − �′)/(1 − V0)

. (4.11)

4.4. EVENLY SPACED WINDOWS

We shall give numerical illustrations of the theory for evenly spaced windows, when, from
(4.5), xn = −n�h/N, 0 ≤ n ≤ N , and

qn(0) = A(1 − V0)

N
, 1 ≤ n ≤ N. (4.12)

Then

Kn = 2NA

n2�h + 2NV0(n�h + N�′)/(1 − V0)
, 1 ≤ n ≤ N; (4.13)

∂2ϕ

∂x2
(r, θ, x, 0) = (1 − V0)

N

N∑
n=1

∂2ϕn

∂x2
(r, θ, x) + V0

∂2ϕ0

∂x2
(r, θ, x), r < R. (4.14)

The optimal value of the nondimensional velocity V0 is the same as for the step-function
model for ϕ(x, 0) discussed in [11], namely

V0 = 1

1 + 0·72N
. (4.15)
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This value ensures that as x increases from x = −�h to some value of x just beyond the
hood portal, the decrease in ∂ϕ/∂x from 1 to 0 is approximately linear. Such a variation is not
actually possible when the hood has a finite number of windows, but can be closely attained if
V0 is chosen to make the mean value of R∂2ϕ/∂x2 roughly constant. In general, the value of
V0 will depend somewhat on the position of the train track inside the tunnel. We shall consider
only the experimental case where the train travels along the tunnel axis (r = 0).

For each n and fixed values of r and θ , it is clear from (4.6) that R∂2ϕn/∂x2 is an even
function of x − xn; it exhibits a single maximum negative peak value at x = xn. On the
tunnel axis this maximum value is approximately equal to −0·89. When the windows are
evenly spaced the series on the right of (4.14) therefore defines a function of x that varies
periodically from window to window within the hood, assuming equal negative maxima of
−0·89(1 − V0)/NR at each window, and tending rapidly to zero outside the hood portal in
x > 0. The final term V0∂

2ϕ0/∂x2 on the right of (4.14) is negative and non-zero only near
x = 0, where it attains a negative maximum value of −0·64V0/R. The average negative
value of ∂2ϕ(x, 0)/∂x2 will be approximately constant within the hood and in the immediate
neighbourhood of the hood portal if all of the peak negative values are taken to be equal, and
this condition leads to (4.15).

Figure 2 illustrates for three different values of V0 the variations of R∂2ϕ(x, 0)/∂x2 given
by (4.14) and the wavy yet linear variations of ∂ϕ(x, 0)/∂x (obtained by integrating (4.14)
from x > 0 where ∂ϕ/∂x = 0) when there are N = 4 evenly spaced windows. The hood has
length �h = 10R, and the solid-line curves indicate how the choice V0 = 0·258 determined by
(4.15) supplies the smoothest variation of ∂ϕ/∂x at the hood portal, and equal negative peak
values for R∂2ϕ/∂x2 at the windows and at the portal.

The corresponding compression and pressure gradient wave profiles for a snub-nosed train
(calculated from Equation (4.3) using (4.14)) and normalized as follows

p

/
ρoU

2

(1 − M2)

Ao

A

(
1 + Ao

A

)
,

∂p

∂t

/
ρoU

3

R(1 − M2)

Ao

A

(
1 + Ao

A

)
, (4.16)

are illustrated in this compact limit in Figure 3 for the two cases of a hood with N = 4 and
N = 6 windows. The approximation to the ideal continuum distribution of windows improves
as the number of windows is increased, and the results clearly demonstrate a relatively smaller
average pressure gradient and a smoother compression-wave profile when N = 6.

5. Noncompact hood

5.1. STAGE I APPROXIMATION

When κo�h is not negligible, the behaviour of Green’s function within the hood must be found
from the solution of (3.14) subject to conditions (3.16) and (3.17). To do this, it should first be
understood that at this point the window dimensions are already known (and given by (4.11))
in terms of V0 from the requirement that ∂ϕI(x, 0)/∂x should vary linearly in the compact
hood. For evenly spaced windows the value of V0 is given by (4.15) when the hood is optimal.
The investigation of this section will determine the influence on this optimal behaviour of
noncompactness, which becomes important at higher train Mach numbers (M > 0·2).

This means that the conductivities of the windows are known. They will not change when
noncompactness becomes important provided that κo�x and κo�θ remain small, i.e., provided
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Figure 2. Calculated variations of (a) ∂ϕ(x, 0)/∂x

and (b) R∂2ϕ(x, 0)/∂x2 on the hood axis (r = 0) for
V0 = 0·05, 0·258, 0·4 in the case of N = 4 evenly
spaced windows in a hood of length �h = 10R. The
solid curves are optimal, V0 = 0·258 being given by
Equation (4.15) to make the negative peak values of
R∂2ϕ/∂x2 equal.

Figure 3. The normalized compression wave and
pressure gradient
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)
produced by a snub nosed train entering a hood
optimized in the compact limit described in
Section 4, for �h = 10R with (a) N = 4 and (b)
N = 6 evenly spaced windows.

that the individual windows are compact, which is certainly the case in practice. The con-
ductivity per unit length of the hood is therefore equal to −Q(x, 0)/ϕI(x, 0), so that the sink
strength in Equation (3.14) is

Q(x, κo) = Q(x, 0)ϕI(x, κo)

ϕI(x, 0)
, (5.1)

and (3.14) becomes the homogeneous ordinary differential equation

∂2ϕI

∂x′2 (x′, κo) +
(

κ2
o + Q(x′, 0)

ϕI(x′, 0)

)
ϕI(x

′, κo) = 0, −�h < x′ < 0. (5.2)

The terms in the large brackets have opposite signs (because ϕI(x, 0) is negative within the
tunnel and hood), making it evident that the nature of the solution must ultimately change
from the hydrodynamic-like behaviour of ϕI(x, 0) in a compact hood to a wavelike behaviour
as κo increases.
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Equation (5.2) is to be solved subject to the conditions (3.16) and (3.17). The value of the
effective portal exit speed V ≡ V (κo) is determined by first solving (5.2) as an initial value
problem, subject to conditions (3.17) at x′ = 0 and choosing V to ensure that (3.16) is satisfied
at x′ = −�h. This has to be done numerically, and is facilitated by first setting

ϕI(x
′, κo) = V (κo)�I(x

′, κo). (5.3)

Then �I(x
′, κo) also satisfies (5.2) subject to

�I(x
′, κo) = −�′,

∂�I

∂x′ (x′, κo) = 1 at x′ = 0. (5.4)

When �I(x
′, κo) has been found by numerical integration of (5.2) from x′ = 0, condition

(3.16) yields

V (κo) =
(

e−iκo�h

∂�I/∂x′ + iκo�I

)
x ′=−�h

, (5.5)

and therefore

ϕI(x
′, κo) = �I(x

′, κo)e−iκo�h

(∂�I/∂x′ + iκo�I) x ′=−�h

, −�h < x′ < 0. (5.6)

5.2. STAGE II APPROXIMATION

When the solution (5.6) has been computed the corresponding source strength qn(κo) of the
nth window is determined by (3.13), wherein the conductivity Kn is given by (4.11) in general,
or by (4.13) for evenly spaced windows.

For N evenly spaced windows we have

qn(κ0) = −2NA�I(xn, κo)e−iκo�h(
n2�h + 2NV0(n�h + N�′)/(1 − V0)

)(
∂�I/∂x′ + iκo�I

)
x ′=−�h

. (5.7)

The compression-wave pressure gradient ∂p/∂t may now be calculated from (3.8), or from
(3.11) for the snub-nosed train, by introducing the compressible analogue of (4.8), namely

∂2ϕ

∂x2
(x, κo) =

N∑
n=1

qn(κo)

A

∂2ϕn

∂x2
(r, θ, x) + V (κo)

∂2ϕ0

∂x2
(r, θ, x), r < R. (5.8)

To use this formula we define

Fn(t) = 1

A

∫ ∞

−∞
qn(κo)e

−iωtdω, 1 ≤ n ≤ N;

F0(t) =
∫ ∞

−∞
V (κo)e

−iωtdω.

(5.9)

These functions have the dimensions of time−1 and are readily evaluated numerically. Using
(5.8) and (5.9) in the representations (3.8) and (3.11), we therefore have, as x → −∞
∂p

∂t
≈ −ρoU

3

2π(1 − M2)A

(
1+Ao

A

) N∑
n=0

∫ ∞

−∞
∂AT

∂x′ (x′+Uτ)Fn(t−τ+x/co)
∂2ϕn

∂x′2 (x′, 0, 0)dx′dτ,

(5.10)
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Figure 4. The normalized compression wave and
pressure gradient
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produced by a snub nosed train entering a hood with
N = 4 evenly spaced windows, optimized in the
compact limit described in Section 4 for �h = 10R:
(a) M = 0·05, (b) M = 0·2 and (c) M = 0·4.

Figure 5. The normalized compression wave and
pressure gradient
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produced by a snub nosed train entering a hood with
N = 6 evenly spaced windows, optimized in the
compact limit described in Section 4 for �h = 10R:
(a) M = 0·05, (b) M = 0·2 and (c) M = 0·4.

and for the snub-nosed train

∂p

∂t
≈ −ρoU

3

2π(1 − M2)

Ao

A

(
1 + Ao

A

) N∑
n=0

∫ ∞

−∞
Fn(t − τ + x/co)

∂2ϕn

∂x′2 (−Uτ, 0, 0)dτ. (5.11)

Figures 4 and 5 depict predictions of the compression wave pressure p and the pressure
gradient ∂p/∂t calculated from (5.11) and normalized as in (4.16) for a snub-nosed train
and the three train Mach numbers M = 0·05, 0·2, 0·4. The hood has length �h = 10R,
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and the figures are, respectively, for the two cases of N = 4 and N = 6 windows. At the
smallest Mach number of M = 0·05 the plots are indistinguishable from those in Figure 3,
computed using the compact hood formula (4.14). As the train speed increases, however, the
pressure gradient increases near U [t]/R = 0, as the train enters the hood, but is smaller at
later times. Thus, it appears that with increased train Mach number the inertia of air within
the hood initially resists the entering train causing a sharp but moderate pressure rise which
subsequently relaxes as the high-pressure air begins to flow out of the windows. The negative
dips in the pressure gradient just after train entry (when M = 0·2, 0·4) are probably anom-
alous predictions (similar to that predicted in [15] for a hood with one window), and would
not be observed in practice because such a sharp drop in the pressure gradient is caused by
the air flow from the first window, which in practice is impeded by vorticity production in the
window, as discussed in detail in [15].

6. Conclusion

There are two principal consequences for compression wave formation of increasing the Mach
number of a train entering a tunnel entrance hood fitted with window vents. First, there is an
overall increase in the pressure rise across the wave front by a factor

∼ 1

1 − M2
.

This is independent of hood design, and indeed is the same whether or not the tunnel is fitted
with a hood, and in a first approximation it has no effect on the shape of the wave front profile.

Second, finite Mach number tends to reduce the ‘compactness’ of the hood length, so that
phase differences between the interactions of the train nose with windows at opposite ends
of the hood become progressively more important. In the low-Mach-number, compact limit
it can be asserted that the whole array of windows distributed along the length of the hood
‘work together’ to control the compression wave profile. It is then possible to optimize hood
performance by adjusting the distribution of the windows and their respective dimensions
to ensure that the pressure exhibits the most desirable linear growth across the compression
wave front for all sufficiently small values of the train Mach number. At high Mach numbers,
however, the influences of widely separated windows on the wave are essentially independent;
when M exceeds about 0·2 a moderate but significant pressure rise occurs at the head of the
wave front at the retarded instant at which the train nose just enters the hood, before the flow
in the portal just in front of the nose has had time to adjust to the presence of the more remote
hood windows, that render immediate relief for high-pressure air in the compact limit. Once
the nose is within the main body of the hood, however, wave-growth becomes substantially
smoother and close to linear, as the effective train nose ‘sources’ find themselves in a relatively
homogeneous environment provided by the distributed windows.

The continuum theory described in this paper can be modified in a fairly obvious manner to
permit the fine tuning of wave profiles for continuous high speed operations at Mach numbers
of, say, 0·3 and higher representative of proposed ‘Maglev’ services. This will presumably
involve a degradation in hood performance at lower Mach numbers, although one can also,
perhaps, anticipate the introduction of ‘smart’ hoods that use speed sensors to automatically
adjust window dimensions to optimize hood performance for an entering train.
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